Commonly used exothermic or endothermic chemical reaction which is necessary for modern life

Many chemical reactions release energy in the form of heat, light, or sound. These are exothermic reactions. Exothermic reactions may occur spontaneously and result in higher randomness or entropy (ΔS > 0) of the system. They are denoted by a negative heat flow (heat is lost to the surroundings) and decrease in enthalpy (ΔH < 0). In the lab, exothermic reactions produce heat or may even be explosive.

There are other chemical reactions that must absorb energy in order to proceed. These are endothermic reactions. Endothermic reactions cannot occur spontaneously. Work must be done in order to get these reactions to occur. When endothermic reactions absorb energy, a temperature drop is measured during the reaction. Endothermic reactions are characterized by positive heat flow (into the reaction) and an increase in enthalpy (+ΔH).

Examples of Endothermic and Exothermic Processes

Photosynthesis is an example of an endothermic chemical reaction. In this process, plants use the energy from the sun to convert carbon dioxide and water into glucose and oxygen. This reaction requires 15MJ of energy (sunlight) for every kilogram of glucose that is produced:

sunlight + 6CO2(g) + H2O(l) = C6H12O6(aq) + 6O2(g)

Other examples of endothermic processes include:

  • Dissolving ammonium chloride in water
  • Cracking alkanes
  • Nucleosynthesis of elements heavier than nickel in stars
  • Evaporating liquid water
  • Melting ice

An example of an exothermic reaction is the mixture of sodium and chlorine to yield table salt. This reaction produces 411 kJ of energy for each mole of salt that is produced:

Na(s) + 0.5Cl2(s) = NaCl(s)

Other examples of exothermic processes include:

  • The thermite reaction
  • A neutralization reaction (e.g., mixing an acid and a base to form a salt and water)
  • Most polymerization reactions
  • Combustion of a fuel
  • Respiration
  • Nuclear fission
  • Corrosion of metal (an oxidation reaction)
  • Dissolving an acid in water

Demonstrations You Can Perform

Many exothermic and endothermic reactions involve toxic chemicals, extreme heat or cold, or messy disposal methods. An example of a quick exothermic reaction is dissolving powdered laundry detergent in your hand with a bit of water. An example of an easy endothermic reaction is dissolving potassium chloride (sold as a salt substitute) in your hand with water.

These endothermic and exothermic demonstrations are safe and easy:

  • Exciting Exothermic Reactions to Try: Heat things up with one of these simple exothermic reaction demonstrations.
  • Create an Endothermic Reaction: Some endothermic reactions get cold enough to cause frostbite. Here's an example of a reaction safe enough for kids to touch.
  • How to Create an Exothermic Chemical Reaction: Some exothermic reactions produce flames and get extremely hot (like the thermite reaction). Here is a safe exothermic reaction that produces heat but won't start fires or cause a burn.
  • Make Hot Ice From Vinegar and Baking Soda: Sodium acetate or "hot ice" can be used as either an endothermic or exothermic reaction, depending on whether you are crystallizing or melting the solid.

Endothermic vs Exothermic Comparison

Here's a quick summary of the differences between endothermic and exothermic reactions:

EndothermicExothermicheat is absorbed (feels cold)heat is released (feels warm)energy must be added for reaction to occurreaction occurs spontaneouslydisorder decreases (ΔS < 0)entropy increases (ΔS > 0)increase in enthalpy (+ΔH)decrease in enthalpy (-ΔH)

Endergonic and Exergonic Reactions

Endothermic and exothermic reactions refer to the absorption or release of heat. There are other types of energy which may be produced or absorbed by a chemical reaction. Examples include light and sound. In general, reactions involving energy may be classified as endergonic or exergonic, An endothermic reaction is an example of an endergonic reaction. An exothermic reaction is an example of an exergonic reaction.

Key Facts

  • Endothermic and exothermic reactions are chemical reactions that absorb and release heat, respectively.
  • A good example of an endothermic reaction is photosynthesis. Combustion is an example of an exothermic reaction.
  • The categorization of a reaction as endo- or exothermic depends on the net heat transfer. In any given reaction, heat is both absorbed and released. For example, energy must be input into a combustion reaction to start it (lighting a fire with a match), but then more heat is released than was required.

Resources and Further Reading

  • Qian, Y.‐Z., et al. “Diverse Supernova Sources for the r‐Process.” The Astrophysical Journal, vol. 494, no. 1, 10 Feb. 1998, pp. 285-296, doi:10.1086/305198.
  • Yin, Xi, et al. “Self-Heating Approach to the Fast Production of Uniform Metal Nanostructures.” Chemistry of Nanomaterials for Energy, Biology and More, vol. 2, no. 1, 26 Aug. 2015, pp. 37-41, doi:10.1002/cnma.201500123.

Cite this Article


Your Citation

Helmenstine, Anne Marie, Ph.D. "Understanding Endothermic and Exothermic Reactions." ThoughtCo. (accessed December 21, 2022).

What chemical reaction is the most important for all life?

Photosynthesis is the most important chemical reaction in the biosphere, as it is the prerequisite for all higher life on earth.

What types of chemical reactions are helpful in everyday life?

In this article, we will talk about chemical processes that take place in our daily lives..
Rusting. ... .
Digestion. ... .
Photosynthesis. ... .
Detergent and Soap Reactions. ... .
Aerobic Cellular Respiration. ... .
Anaerobic Cellular Respiration. ... .
Acid-Base Reactions..

Why are endothermic and exothermic reactions important in everyday life?

The principle of exothermic and endothermic reactions is applied in instant cold packs and hot packs which are used to treat sports injuries. Instant cold packs have separate compartments of water and solid ammonium nitrate placed in a plastic bag. The compartments are normally separated by a thin film.

What is the use of exothermic reaction in everyday life?

Burning of a Candle When paraffin burns with the flame, it reacts with oxygen to create carbon dioxide and water. This reaction is certainly exothermic as it gives out heat to the atmosphere with the help of other products. The amount of heat released depends on the chemical reaction between the hydrocarbon and oxygen.