Is an example of application software that allows you to accomplish specific tasks such as word processing or tabulating numbers in MS Excel?

Example of a spreadsheet holding data about a group of audio tracks.

A spreadsheet is a computer application for computation, organization, analysis and storage of data in tabular form.[1][2][3] Spreadsheets were developed as computerized analogs of paper accounting worksheets.[4] The program operates on data entered in cells of a table. Each cell may contain either numeric or text data, or the results of formulas that automatically calculate and display a value based on the contents of other cells. The term spreadsheet may also refer to one such electronic document.[5][6][7]

Spreadsheet users can adjust any stored value and observe the effects on calculated values. This makes the spreadsheet useful for "what-if" analysis since many cases can be rapidly investigated without manual recalculation. Modern spreadsheet software can have multiple interacting sheets and can display data either as text and numerals or in graphical form.

Besides performing basic arithmetic and mathematical functions, modern spreadsheets provide built-in functions for common financial accountancy and statistical operations. Such calculations as net present value or standard deviation can be applied to tabular data with a pre-programmed function in a formula. Spreadsheet programs also provide conditional expressions, functions to convert between text and numbers, and functions that operate on strings of text.

Spreadsheets have replaced paper-based systems throughout the business world. Although they were first developed for accounting or bookkeeping tasks, they now are used extensively in any context where tabular lists are built, sorted, and shared.

Basics[edit]

LANPAR, available in 1969,[8] was the first electronic spreadsheet on mainframe and time sharing computers. LANPAR was an acronym: LANguage for Programming Arrays at Random.[8] VisiCalc [1979] was the first electronic spreadsheet on a microcomputer,[9] and it helped turn the Apple II computer into a popular and widely used system. Lotus 1-2-3 was the leading spreadsheet when DOS was the dominant operating system.[10] Microsoft Excel now has the largest market share on the Windows and Macintosh platforms.[11][12][13] A spreadsheet program is a standard feature of an office productivity suite; since the advent of web apps, office suites now also exist in web app form.

A spreadsheet consists of a table of cells arranged into rows and columns and referred to by the X and Y locations. X locations, the columns, are normally represented by letters, "A," "B," "C," etc., while rows are normally represented by numbers, 1, 2, 3, etc. A single cell can be referred to by addressing its row and column, "C10". This electronic concept of cell references was first introduced in LANPAR [Language for Programming Arrays at Random] [co-invented by Rene Pardo and Remy Landau] and a variant used in VisiCalc and known as "A1 notation". Additionally, spreadsheets have the concept of a range, a group of cells, normally contiguous. For instance, one can refer to the first ten cells in the first column with the range "A1:A10". LANPAR innovated forward referencing/natural order calculation which didn't re-appear until Lotus 123 and Microsoft's MultiPlan Version 2.

In modern spreadsheet applications, several spreadsheets, often known as worksheets or simply sheets, are gathered together to form a workbook. A workbook is physically represented by a file containing all the data for the book, the sheets, and the cells with the sheets. Worksheets are normally represented by tabs that flip between pages, each one containing one of the sheets, although Numbers changes this model significantly. Cells in a multi-sheet book add the sheet name to their reference, for instance, "Sheet 1!C10". Some systems extend this syntax to allow cell references to different workbooks.

Users interact with sheets primarily through the cells. A given cell can hold data by simply entering it in, or a formula, which is normally created by preceding the text with an equals sign. Data might include the string of text hello world, the number 5 or the date 16-Dec-91. A formula would begin with the equals sign, =5*3, but this would normally be invisible because the display shows the result of the calculation, 15 in this case, not the formula itself. This may lead to confusion in some cases.

The key feature of spreadsheets is the ability for a formula to refer to the contents of other cells, which may, in turn, be the result of a formula. To make such a formula, one replaces a number with a cell reference. For instance, the formula =5*C10 would produce the result of multiplying the value in cell C10 by the number 5. If C10 holds the value 3 the result will be 15. But C10 might also hold its formula referring to other cells, and so on.

The ability to chain formulas together is what gives a spreadsheet its power. Many problems can be broken down into a series of individual mathematical steps, and these can be assigned to individual formulas in cells. Some of these formulas can apply to ranges as well, like the SUM function that adds up all the numbers within a range.

Spreadsheets share many principles and traits of databases, but spreadsheets and databases are not the same things. A spreadsheet is essentially just one table, whereas a database is a collection of many tables with machine-readable semantic relationships. While it is true that a workbook that contains three sheets is indeed a file containing multiple tables that can interact with each other, it lacks the relational structure of a database. Spreadsheets and databases are interoperable—sheets can be imported into databases to become tables within them, and database queries can be exported into spreadsheets for further analysis.

A spreadsheet program is one of the main components of an office productivity suite, which usually also contains a word processor, a presentation program, and a database management system. Programs within a suite use similar commands for similar functions. Usually, sharing data between the components is easier than with a non-integrated collection of functionally equivalent programs. This was particularly an advantage at a time when many personal computer systems used text-mode displays and commands instead of a graphical user interface.

History[edit]

Paper spreadsheets[edit]

The word "spreadsheet" came from "spread" in its sense of a newspaper or magazine item [text or graphics] that covers two facing pages, extending across the centerfold and treating the two pages as one large page. The compound word 'spread-sheet' came to mean the format used to present book-keeping ledgers—with columns for categories of expenditures across the top, invoices listed down the left margin, and the amount of each payment in the cell where its row and column intersect—which were, traditionally, a "spread" across facing pages of a bound ledger [book for keeping accounting records] or on oversized sheets of paper [termed 'analysis paper'] ruled into rows and columns in that format and approximately twice as wide as ordinary paper.[14]

Early implementations[edit]

Batch spreadsheet report generator BSRG[edit]

A batch "spreadsheet" is indistinguishable from a batch compiler with added input data, producing an output report, i.e., a 4GL or conventional, non-interactive, batch computer program. However, this concept of an electronic spreadsheet was outlined in the 1961 paper "Budgeting Models and System Simulation" by Richard Mattessich.[15] The subsequent work by Mattessich [1964a, Chpt. 9, Accounting and Analytical Methods] and its companion volume, Mattessich [1964b, Simulation of the Firm through a Budget Computer Program] applied computerized spreadsheets to accounting and budgeting systems [on mainframe computers programmed in FORTRAN IV]. These batch Spreadsheets dealt primarily with the addition or subtraction of entire columns or rows [of input variables], rather than individual cells.

In 1962, this concept of the spreadsheet, called BCL for Business Computer Language, was implemented on an IBM 1130[dubious – discuss] and in 1963 was ported to an IBM 7040 by R. Brian Walsh at Marquette University, Wisconsin. This program was written in Fortran. Primitive timesharing was available on those machines. In 1968 BCL was ported by Walsh to the IBM 360/67 timesharing machine at Washington State University. It was used to assist in the teaching of finance to business students. Students were able to take information prepared by the professor and manipulate it to represent it and show ratios etc. In 1964, a book entitled Business Computer Language was written by Kimball, Stoffells and Walsh and both the book and program were copyrighted in 1966 and years later that copyright was renewed.[16]

Applied Data Resources had a FORTRAN preprocessor called Empires.

In the late 1960s, Xerox used BCL to develop a more sophisticated version for their timesharing system.

LANPAR spreadsheet compiler[edit]

A key invention in the development of electronic spreadsheets was made by Rene K. Pardo and Remy Landau, who filed in 1970 U.S. Patent 4,398,249 on a spreadsheet automatic natural order calculation algorithm. While the patent was initially rejected by the patent office as being a purely mathematical invention, following 12 years of appeals, Pardo and Landau won a landmark court case at the Predecessor Court of the Federal Circuit [CCPA], overturning the Patent Office in 1983 — establishing that "something does not cease to become patentable merely because the point of novelty is in an algorithm." However, in 1995 the United States Court of Appeals for the Federal Circuit ruled the patent unenforceable.[17]

The actual software was called LANPAR — LANguage for Programming Arrays at Random.[note 1] This was conceived and entirely developed in the summer of 1969, following Pardo and Landau's recent graduation from Harvard University. Co-inventor Rene Pardo recalls that he felt that one manager at Bell Canada should not have to depend on programmers to program and modify budgeting forms, and he thought of letting users type out forms in any order and having an electronic computer calculate results in the right order ["Forward Referencing/Natural Order Calculation"]. Pardo and Landau developed and implemented the software in 1969.[18]

LANPAR was used by Bell Canada, AT&T, and the 18 operating telephone companies nationwide for their local and national budgeting operations. LANPAR was also used by General Motors. Its uniqueness was Pardo's co-invention incorporating forward referencing/natural order calculation [one of the first "non-procedural" computer languages][19] as opposed to left-to-right, top to bottom sequence for calculating the results in each cell that was used by VisiCalc, SuperCalc, and the first version of MultiPlan. Without forward referencing/natural order calculation, the user had to refresh the spreadsheet until the values in all cells remained unchanged. Once the cell values stayed constant, the user was assured that there were no remaining forward references within the spreadsheet.

Autoplan/Autotab spreadsheet programming language[edit]

In 1968, three former employees from the General Electric computer company headquartered in Phoenix, Arizona set out to start their own software development house. A. Leroy Ellison, Harry N. Cantrell, and Russell E. Edwards found themselves doing a large number of calculations when making tables for the business plans that they were presenting to venture capitalists. They decided to save themselves a lot of effort and wrote a computer program that produced their tables for them. This program, originally conceived as a simple utility for their personal use, would turn out to be the first software product offered by the company that would become known as Capex Corporation. "AutoPlan" ran on GE's Time-sharing service; afterward, a version that ran on IBM mainframes was introduced under the name AutoTab. [National CSS offered a similar product, CSSTAB, which had a moderate timesharing user base by the early 1970s. A major application was opinion research tabulation.]

AutoPlan/AutoTab was not a WYSIWYG interactive spreadsheet program, it was a simple scripting language for spreadsheets. The user-defined the names and labels for the rows and columns, then the formulas that defined each row or column. In 1975, Autotab-II was advertised as extending the original to a maximum of "1,500 rows and columns, combined in any proportion the user requires..."[20]

GE Information Services, which operated the time-sharing service, also launched its own spreadsheet system, Financial Analysis Language [FAL], circa 1974. It was later supplemented by an additional spreadsheet language, TABOL,[21][22] which was developed by an independent author, Oliver Vellacott in the UK. Both FAL and TABOL were integrated with GEIS's database system, DMS.

IBM Financial Planning and Control System[edit]

The IBM Financial Planning and Control System was developed in 1976, by Brian Ingham at IBM Canada. It was implemented by IBM in at least 30 countries. It ran on an IBM mainframe and was among the first applications for financial planning developed with APL that completely hid the programming language from the end-user. Through IBM's VM operating system, it was among the first programs to auto-update each copy of the application as new versions were released. Users could specify simple mathematical relationships between rows and between columns. Compared to any contemporary alternatives, it could support very large spreadsheets. It loaded actual financial planning data drawn from the legacy batch system into each user's spreadsheet monthly. It was designed to optimize the power of APL through object kernels, increasing program efficiency by as much as 50 fold over traditional programming approaches.

APLDOT modeling language[edit]

An example of an early "industrial weight" spreadsheet was APLDOT, developed in 1976 at the United States Railway Association on an IBM 360/91, running at The Johns Hopkins University Applied Physics Laboratory in Laurel, MD.[23] The application was used successfully for many years in developing such applications as financial and costing models for the US Congress and for Conrail. APLDOT was dubbed a "spreadsheet" because financial analysts and strategic planners used it to solve the same problems they addressed with paper spreadsheet pads.

VisiCalc[edit]

VisiCalc running on an Apple II

Because Dan Bricklin and Bob Frankston implemented VisiCalc on the Apple II in 1979 and the IBM PC in 1981, the spreadsheet concept became widely known in the early 1980s. VisiCalc was the first spreadsheet that combined all essential features of modern spreadsheet applications [except for forward referencing/natural order recalculation], such as WYSIWYG interactive user interface, automatic recalculation, status and formula lines, range copying with relative and absolute references, formula building by selecting referenced cells. Unaware of LANPAR at the time PC World magazine called VisiCalc the first electronic spreadsheet.[24]

Bricklin has spoken of watching his university professor create a table of calculation results on a blackboard. When the professor found an error, he had to tediously erase and rewrite several sequential entries in the table, triggering Bricklin to think that he could replicate the process on a computer, using the blackboard as the model to view results of underlying formulas. His idea became VisiCalc, the first application that turned the personal computer from a hobby for computer enthusiasts into a business tool.

VisiCalc went on to become the first "killer application",[25][26] an application that was so compelling, people would buy a particular computer just to use it. VisiCalc was in no small part responsible for the Apple II's success. The program was later ported to a number of other early computers, notably CP/M machines, the Atari 8-bit family and various Commodore platforms. Nevertheless, VisiCalc remains best known as an Apple II program.

SuperCalc[edit]

SuperCalc was a spreadsheet application published by Sorcim in 1980, and originally bundled [along with WordStar] as part of the CP/M software package included with the Osborne 1 portable computer. It quickly became the de facto standard spreadsheet for CP/M and was ported to MS-DOS in 1982.

Lotus 1-2-3 and other MS-DOS spreadsheets[edit]

The acceptance of the IBM PC following its introduction in August 1981, began slowly because most of the programs available for it were translations from other computer models. Things changed dramatically with the introduction of Lotus 1-2-3 in November 1982, and release for sale in January 1983. Since it was written especially for the IBM PC, it had a good performance and became the killer app for this PC. Lotus 1-2-3 drove sales of the PC due to the improvements in speed and graphics compared to VisiCalc on the Apple II.[27]

Lotus 1-2-3, along with its competitor Borland Quattro, soon displaced VisiCalc. Lotus 1-2-3 was released on January 26, 1983, started outselling then-most-popular VisiCalc the very same year, and for several years was the leading spreadsheet for DOS.

Microsoft Excel[edit]

Microsoft released the first version of Excel for the Macintosh on September 30, 1985, and then ported[28] it to Windows, with the first version being numbered 2.05 [to synchronize with the Macintosh version 2.2] and released in November 1987. The Windows 3.x platforms of the early 1990s made it possible for Excel to take market share from Lotus. By the time Lotus responded with usable Windows products, Microsoft had begun to assemble their Office suite. By 1995, Excel was the market leader, edging out Lotus 1-2-3,[14] and in 2013, IBM discontinued Lotus 1-2-3 altogether.[29]

Web-based spreadsheets[edit]

Notable current web-based spreadsheet software:

  • Collabora Online Calc is a free, open-source and cross-platform enterprise-ready edition of LibreOffice.
  • Ethercalc is a simple open-source collaborative spreadsheet that runs in browsers.
  • Google Sheets
  • Microsoft Excel Online

Mainframe spreadsheets[edit]

  • The Works Records System at ICI developed in 1974 on IBM 370/145[30]

Other spreadsheets[edit]

Notable current spreadsheet software:

  • Apache OpenOffice Calc is a free and open-source.
  • Calligra Sheets [formerly KCalc]
  • Collabora Online Calc for mobile and desktop apps are free, open-source, cross-platform enterprise-ready editions of LibreOffice.
  • Corel Quattro Pro [WordPerfect Office]
  • Gnumeric is free and cross-platform, it is part of the GNOME Free Software Desktop Project.
  • Kingsoft Spreadsheets
  • LibreOffice Calc is free, open-source and cross platform.
  • NeoOffice
  • Numbers is Apple Inc.'s spreadsheet software, part of iWork.
  • PlanMaker [SoftMaker Office]
  • Pyspread

Discontinued spreadsheet software:

  • 20/20
  • 3D-Calc for Atari ST computers
  • Framework by Forefront Corporation/Ashton-Tate [1983–84]
  • GNU Oleo – A traditional terminal mode spreadsheet for UNIX/UNIX-like systems
  • IBM Lotus Symphony [2007]
  • Javelin Software
  • KCells
  • Lucid 3-D
  • Lotus Improv[31]
  • Lotus Jazz for Macintosh
  • Lotus Symphony [1984]
  • MultiPlan
  • Claris' Resolve [Macintosh]
  • Resolver One
  • Borland's Quattro Pro
  • SIAG
  • SuperCalc
  • T/Maker
  • Target Planner Calc for CP/M and TRS-DOS[32][33]
  • Trapeze for Macintosh[34]
  • Wingz for Macintosh

Other products[edit]

Several companies have attempted to break into the spreadsheet market with programs based on very different paradigms. Lotus introduced what is likely the most successful example, Lotus Improv, which saw some commercial success, notably in the financial world where its powerful data mining capabilities remain well respected to this day.

Spreadsheet 2000 attempted to dramatically simplify formula construction, but was generally not successful.

Concepts[edit]

The main concepts are those of a grid of cells, called a sheet, with either raw data, called values, or formulas in the cells. Formulas say how to mechanically compute new values from existing values. Values are general numbers, but can also be pure text, dates, months, etc. Extensions of these concepts include logical spreadsheets. Various tools for programming sheets, visualizing data, remotely connecting sheets, displaying cells' dependencies, etc. are commonly provided.

Cells[edit]

A "cell" can be thought of as a box for holding data. A single cell is usually referenced by its column and row [C2 would represent the cell containing the value 30 in the example table below]. Usually rows, representing the dependent variables, are referenced in decimal notation starting from 1, while columns representing the independent variables use 26-adic bijective numeration using the letters A-Z as numerals. Its physical size can usually be tailored to its content by dragging its height or width at box intersections [or for entire columns or rows by dragging the column- or row-headers].

My Spreadsheet ABCD 01 02
Sales 100000 30000 70000
Purchases 25490 30 200

An array of cells is called a sheet or worksheet. It is analogous to an array of variables in a conventional computer program [although certain unchanging values, once entered, could be considered, by the same analogy, constants]. In most implementations, many worksheets may be located within a single spreadsheet. A worksheet is simply a subset of the spreadsheet divided for the sake of clarity. Functionally, the spreadsheet operates as a whole and all cells operate as global variables within the spreadsheet [each variable having 'read' access only except its containing cell].

A cell may contain a value or a formula, or it may simply be left empty. By convention, formulas usually begin with = sign.

Values[edit]

A value can be entered from the computer keyboard by directly typing into the cell itself. Alternatively, a value can be based on a formula [see below], which might perform a calculation, display the current date or time, or retrieve external data such as a stock quote or a database value.

The Spreadsheet Value Rule

Computer scientist Alan Kay used the term value rule to summarize a spreadsheet's operation: a cell's value relies solely on the formula the user has typed into the cell.[35] The formula may rely on the value of other cells, but those cells are likewise restricted to user-entered data or formulas. There are no 'side effects' to calculating a formula: the only output is to display the calculated result inside its occupying cell. There is no natural mechanism for permanently modifying the contents of a cell unless the user manually modifies the cell's contents. In the context of programming languages, this yields a limited form of first-order functional programming.[36]

Automatic recalculation[edit]

A standard of spreadsheets since the 1980s, this optional feature eliminates the need to manually request the spreadsheet program to recalculate values [nowadays typically the default option unless specifically 'switched off' for large spreadsheets, usually to improve performance]. Some earlier spreadsheets required a manual request to recalculate since the recalculation of large or complex spreadsheets often reduced data entry speed. Many modern spreadsheets still retain this option.

Recalculation generally requires that there are no circular dependencies in a spreadsheet. A dependency graph is a graph that has a vertex for each object to be updated, and an edge connecting two objects whenever one of them needs to be updated earlier than the other. Dependency graphs without circular dependencies form directed acyclic graphs, representations of partial orderings [in this case, across a spreadsheet] that can be relied upon to give a definite result.[37]

Real-time update[edit]

This feature refers to updating a cell's contents periodically with a value from an external source—such as a cell in a "remote" spreadsheet. For shared, Web-based spreadsheets, it applies to "immediately" updating cells another user has updated. All dependent cells must be updated also.

Locked cell[edit]

Once entered, selected cells [or the entire spreadsheet] can optionally be "locked" to prevent accidental overwriting. Typically this would apply to cells containing formulas but might apply to cells containing "constants" such as a kilogram/pounds conversion factor [2.20462262 to eight decimal places]. Even though individual cells are marked as locked, the spreadsheet data are not protected until the feature is activated in the file preferences.

Data format[edit]

A cell or range can optionally be defined to specify how the value is displayed. The default display format is usually set by its initial content if not specifically previously set, so that for example "31/12/2007" or "31 Dec 2007" would default to the cell format of date. Similarly adding a % sign after a numeric value would tag the cell as a percentage cell format. The cell contents are not changed by this format, only the displayed value.

Some cell formats such as "numeric" or "currency" can also specify the number of decimal places.

This can allow invalid operations [such as doing multiplication on a cell containing a date], resulting in illogical results without an appropriate warning.

Cell formatting[edit]

Depending on the capability of the spreadsheet application, each cell [like its counterpart the "style" in a word processor] can be separately formatted using the attributes of either the content [point size, color, bold or italic] or the cell [border thickness, background shading, color]. To aid the readability of a spreadsheet, cell formatting may be conditionally applied to data; for example, a negative number may be displayed in red.

A cell's formatting does not typically affect its content and depending on how cells are referenced or copied to other worksheets or applications, the formatting may not be carried with the content.

Named cells[edit]

Use of named column variables x & y in Microsoft Excel. Formula for y=x2 resembles Fortran, and Name Manager shows the definitions of x & y.

In most implementations, a cell, or group of cells in a column or row, can be "named" enabling the user to refer to those cells by a name rather than by a grid reference. Names must be unique within the spreadsheet, but when using multiple sheets in a spreadsheet file, an identically named cell range on each sheet can be used if it is distinguished by adding the sheet name. One reason for this usage is for creating or running macros that repeat a command across many sheets. Another reason is that formulas with named variables are readily checked against the algebra they are intended to implement [they resemble Fortran expressions]. The use of named variables and named functions also makes the spreadsheet structure more transparent.

Cell reference[edit]

In place of a named cell, an alternative approach is to use a cell [or grid] reference. Most cell references indicate another cell in the same spreadsheet, but a cell reference can also refer to a cell in a different sheet within the same spreadsheet, or [depending on the implementation] to a cell in another spreadsheet entirely, or a value from a remote application.

A typical cell reference in "A1" style consists of one or two case-insensitive letters to identify the column [if there are up to 256 columns: A–Z and AA–IV] followed by a row number [e.g., in the range 1–65536]. Either part can be relative [it changes when the formula it is in is moved or copied], or absolute [indicated with $ in front of the part concerned of the cell reference]. The alternative "R1C1" reference style consists of the letter R, the row number, the letter C, and the column number; relative row or column numbers are indicated by enclosing the number in square brackets. Most current spreadsheets use the A1 style, some providing the R1C1 style as a compatibility option.

When the computer calculates a formula in one cell to update the displayed value of that cell, cell reference[s] in that cell, naming some other cell[s], causes the computer to fetch the value of the named cell[s].

A cell on the same "sheet" is usually addressed as:

=A1

A cell on a different sheet of the same spreadsheet is usually addressed as:

=SHEET2!A1 [that is; the first cell in sheet 2 of the same spreadsheet].

Some spreadsheet implementations in Excel allow cell references to another spreadsheet [not the currently open and active file] on the same computer or a local network. It may also refer to a cell in another open and active spreadsheet on the same computer or network that is defined as shareable. These references contain the complete filename, such as:

='C:\Documents and Settings\Username\My spreadsheets\[main sheet]Sheet1!A1

In a spreadsheet, references to cells automatically update when new rows or columns are inserted or deleted. Care must be taken, however, when adding a row immediately before a set of column totals to ensure that the totals reflect the values of the additional rows—which they often do not.

A circular reference occurs when the formula in one cell refers—directly, or indirectly through a chain of cell references—to another cell that refers back to the first cell. Many common errors cause circular references. However, some valid techniques use circular references. These techniques, after many spreadsheet recalculations, [usually] converge on the correct values for those cells.

Cell ranges[edit]

Likewise, instead of using a named range of cells, a range reference can be used. Reference to a range of cells is typical of the form [A1:A6], which specifies all the cells in the range A1 through to A6. A formula such as "=SUM[A1:A6]" would add all the cells specified and put the result in the cell containing the formula itself.

Sheets[edit]

In the earliest spreadsheets, cells were a simple two-dimensional grid. Over time, the model has expanded to include a third dimension, and in some cases a series of named grids, called sheets. The most advanced examples allow inversion and rotation operations which can slice and project the data set in various ways.

Formulas[edit]

Animation of a simple spreadsheet that multiplies values in the left column by 2, then sums the calculated values from the right column to the bottom-most cell. In this example, only the values in the A column are entered [10, 20, 30], and the remainder of cells are formulas. Formulas in the B column multiply values from the A column using relative references, and the formula in B4 uses the SUM[] function to find the sum of values in the B1:B3 range.

A formula identifies the calculation needed to place the result in the cell it is contained within. A cell containing a formula, therefore, has two display components; the formula itself and the resulting value. The formula is normally only shown when the cell is selected by "clicking" the mouse over a particular cell; otherwise, it contains the result of the calculation.

A formula assigns values to a cell or range of cells, and typically has the format:

where the expression consists of:

  • values, such as 2, 9.14 or 6.67E-11;
  • references to other cells, such as, e.g., A1 for a single cell or B1:B3 for a range;
  • arithmetic operators, such as +, -, *, /, and others;
  • relational operators, such as >=,

Chủ Đề